МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Северский технологический институт - филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (СТИ НИЯУ МИФИ)

Кафедра ЭиАФУ

Моделирование систем массового обслуживания в общеобразовательных учреждениях Методическое пособие к проекту

Руководители:
Доцент каф. ЭиАФУ, к.т.н.
Иванов К.А.
Студент каф. ЭиАФУ
Правосуд С.С.

Северск 2019

Содержание

1	Сбор ис	ходных данных	4
	•	выполнения	
	2.1	Первый этап - система с отказами	6
	2.2	Второй этап - смешанная система	7
	2.2.1	Система с ограничением длины очереди	7
	2.2.2	Система с ограничением времени пребывания в очереди	8
	2.3	Третий этап – влияние производительности каналов	9

Введение

Теория массового обслуживания — один из многочисленных разделов математики, занимающийся обработкой и анализом процессов в различных системах, будь то системы обслуживания, управления или производства. В данных системах однородные события могут повторятся многократно, например, прием, обработка и передача информации.

Данная работа представляет собой работу по созданию и реализации математической модели системы массового обслуживания столовой общеобразовательного учреждения.

Цель работы — получить математическую модель в виде кода программы. Анализ СМО будет заключаться в определении ряда показателей модели, которые можно разделить на следующие группы:

- а) показатели, характеризующие систему в целом: число n занятых каналов обслуживания(например, работников столовой, способных обслужить учащихся в необеденное время), число обслуженных λ_b (например, количество учеников, успевших купить желаемое блюдо на перемене), ожидающих обслуживание или получивших отказ заявок λ_c (например, стоящих в очереди и не успевших купить продукцию) в единицу времени;
- б) вероятностные характеристики: вероятность того, что заявка будет обслужена $P_{\text{обс}}$ или получит отказ в обслуживании $P_{\text{отк}}$, что все работники свободны p_0 или определенное число их занято p_k , вероятность наличия очереди;
- в) экономические показатели: стоимость потерь, связанных с уходом не обслуженного по тем или иным причинам учащегося из столовой, экономический эффект, полученный в результате обслуживания заявки, и т.д.

В ходе создания проекта проводится сравнительный анализ эффективности простейших систем массового обслуживания.

К рассмотренным системам относятся:

- а) Системы с отказами;
- б) Системы с ограничением на время пребывания заявки в очереди;
- в) Системы с ограничением на длину очереди.

Сравнение систем проводится на основе сопоставления их показателей эффективности, характеризующих изучаемые системы, как с точки зрения потребителей, так и с точки зрения их эксплуатационных свойств.

1 Сбор исходных данных

В данном разделе необходимо провести эксперимент в столовой реального общеобразовательного учреждения. Нас будет интересовать следующие параметры:

 $M_{
m oбc}$ — количество поступивших заявок на обслуживание;

 $k_{
m oбc}$ — количество людей, находящихся в очереди на обслуживание;

 $\bar{t}_{
m oбc}$ — время обслуживания одной поступившей заявки;

 λ_b — число обслуженных заявок во время перемены;

 λ_a — число необслуженных заявок за время перемены;

 $P_{\rm oбc}$ — вероятность обслуживания заявки на перемене;

 n^* — число каналов обслуживания(кассиров).

Вероятность обслуживания заявки $P_{\text{обс}}$ вычислим по формуле:

$$P_{\text{ofc}} = \frac{M_{\text{ofc}}}{\lambda_h}$$

Данные занесем в таблицу:

Таблица 1 – исходные данные

Номер	Мобс	$k_{ m o 6c}$	$ar{t}_{ m o 6c}$	λ_a	λ_b	$P_{ m o6c}$	n^*
перемены							
1							
2							
3							
4							
5							
6							

Часто мероприятия, осуществляемые для повышения показателей эффективности с точки зрения потребителя приводит к ухудшению показателей эксплуатационных свойств и наоборот . Чтобы оптимизировать нашу систему будем использовать экономические показатели, характеризующие систему одновременно с обеих точек зрения. В рассматриваемой работе в качестве основного такого показателя примем некоторую величину С – среднюю стоимость обслуживания заявки в единицу времени.

$$C = \frac{c_{\text{общ}}}{\lambda_b} (2)$$

$$C_{\text{общ}} = c_{\text{к}} \bar{n}_3 + c_{\text{пк}} \bar{n}_0 + c_{\text{оч}} \bar{r} + c_{\text{отк}} \lambda_c (3)$$

 $C_{\text{общ}}$ —Суммарная стоимость обслуживания всех заявок в единицу времени; где

 \bar{n}_{3} , \bar{n}_{0} — среднее число занятых и свободных каналов, соответственно;

 \bar{r} – среднее число заявок, находящихся в очереди;

λ_с –среднее число заявок, получивших отказ в обслуживании за 1 минуту;

ск - стоимость эксплуатации одного канала;

 $c_{\text{пк}}$ — стоимость простоя одного кассира;

 c_{oq} — стоимость эксплуатации одного места в очереди;

сотк – стоимость убытков, связанных с уходом заявки из системы, получившей отказ в обслуживании.

В качестве весовых коэффициентов для стоимостей примем:
$$c_{\text{к}} = 0.5 \, \frac{\text{ед.стоим.}}{\text{канал}}, \quad c_{\text{пк}} = 0.2 \, \frac{\text{ед.стоим.}}{\text{канал}}, \quad c_{\text{оч}} = 0.1 \, \frac{\text{ед.стоим.}}{\text{заявка в очереди}}, \, c_{\text{отк}} = 0.2 \, \text{ед. стоим.} \cdot \text{ед. врем.}$$

Также в качестве ограничений примем:

- а) число каналов обслуживания не больше максимально возможного числа кассиров;
- б) среднее время пребывания заявки в очереди не больше времени перемены.

2 Этапы выполнения

2.1 Первый этап - система с отказами

Система состоит из одного узла обслуживания, содержащего n каналов (кассиров), каждый из которых может обслуживать только одну заявку.

Все каналы обслуживания одинаковой производительности и для модели системы неразличимы. Если заявка поступила в систему и застала свободным хотя бы один канал, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка покидает систему не обслуженной.

На этом этапе проводится минимизация средней стоимости обслуживания одной заявки в единицу времени для системы с отказами.

Требуется определить число n^* каналов обслуживания, обеспечивающее в системе с отказами наименьшее значение параметра С — средней стоимости обслуживания одной заявки в единицу времени. . В качестве оптимального числа каналов n^* следует принять такое значение , при котором принимает наименьшее значение средняя стоимость С обслуживания одной заявки в единицу времени.

Все данные, полученные при расчетах, заносим в таблицу:

Таблица 2 – Расчет системы с отказами

	,			отказами	Результирующие					
λ =	=1	/ед.вре	M.,	показатели						
n	\overline{n}_3	\bar{n}_0	\overline{r}	λ_c $\frac{1}{\text{ед.вр}}$	λ_b $\frac{1}{\text{ед.вр}}$	Собщ ед.ст	С ед.ст	Робс	k_3	$\overline{t}_{ ext{cuct}}$ ед.вр
1										
2										
3										
4										
5										
6										

Также в качестве результатов можно привести графическую зависимость вероятности обслуживания заявки от числа кассиров, время пребывания заявки от числа кассиров и среднюю стоимость обслуживания одной заявки от количества кассиров:

$$C = C(n),$$

$$P_{\text{ofc}} = P_{\text{ofc}} (n),$$

$$\bar{t}_{\text{chct}} = \bar{t}_{\text{chct}} (n).$$

Необходимый список формул для расчета:

$$\begin{split} \alpha &= \lambda \cdot \bar{t}_{\text{obc}}, \ p_0 = [\sum_{k=0}^n \frac{\alpha^k}{k!}]^{-1}, \ p_k = \frac{\alpha^k}{k!} p_0, \quad p_n = \frac{\alpha^n}{n!} p_0, \ P_{\text{obc}} = 1 - p_n, \\ \lambda_b &= \lambda P_{\text{obc}}, \quad \bar{n}_{\text{3}} = \alpha P_{\text{obc}}, \quad \bar{n}_0 = n - \bar{n}_{\text{3}}, \quad k_{\text{3}} = \frac{\bar{n}_{\text{3}}}{n}, \quad \bar{t}_{\text{chct}} = \frac{\bar{n}_{\text{3}}}{\lambda}. \end{split}$$

2.2 Второй этап - смешанная система

2.2.1 Система с ограничением длины очереди

Система с ограничением на длину очереди состоит из очереди и узла обслуживания. Заявка покидает очередь и уходит из системы, если в накопителе к моменту ее появления уже находятся m заявок (m — максимально возможное число мест в очереди). Если заявка поступила в систему и застала свободным хотя бы один канал обслуживания, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка не покидает систему, а занимает место в очереди. Заявка покидает систему не обслуженной, если к моменту её поступления заняты все места в очереди.

Для каждой системы определяется дисциплина очереди. Это система правил, определяющих порядок поступления заявок из очереди в узел обслуживания. Если все заявки и каналы обслуживания равнозначны, то чаще всего действует правило «кто раньше пришел, тот раньше обслуживается». В рассматриваемом случае анализируется влияние на эффективность системы ограничения на длину очереди.

Задаваясь рядом значений параметра, m вычисляем зависимости C(m), $P_{\rm oбc}(m)$, $\bar{t}_{\rm сист}(m)$. Оптимальной считается система, имеющая наименьший показатель эффективности C.

Таблица 3 – Расчет системы с ограничением длины очереди

	Систе	ма с ог	ранич	F	Р езультиј	рующи	e					
$n^* = $, λ	. =	_1/ед	врем.,	_ед.врем		показа	тели				
m	\overline{n}_3	\overline{n}_0	\overline{r}	λ_c $\frac{1}{\text{ед.вр}}$	λ_b $\frac{1}{\text{ед.вр}}$	С _{общ} ед.ст	С ед.ст	Робс	k_3	$\overline{t}_{ ext{сист}}$ ед.вр		
	Данные системы с отказами											
m = 0												
			Дані	ные систе	мы ограни	ичениями на длин	ну очереді	И				
1												
2												
3												
4	_											
5												

Таблица 4 – Сравнение двух типов систем

К выч	К вычислению общей стоимости обслуживания заявок в единицу времени												
m	$0.5 \cdot \overline{n}_3$	$0, 2 \cdot \overline{n}_0$	$0,1\cdot\overline{r}$	$0, 2 \cdot \lambda_c$	$C_{ m o eta m}$								
	ед.стоим.	ед.стоим.	ед.стоим.	ед.стоим.	ед.стоим.								
Данные системы с отказами													
m = 0													
	Данные си	стемы ограниче	ениями на длин	у очереди									
1													
2													
3													
4													

Необходимый список формул для расчета:

$$\begin{split} p_0 &= [\sum_{k=0}^n \frac{\alpha^k}{k!} + \frac{\alpha^n}{n!} \sum_{s=1}^m \left(\frac{\alpha}{n}\right)^s]^{-1}, \quad p_k = \frac{\alpha^k}{k!} \, p_0, \quad 1 \leq k \leq n, \\ p_{n+s} &= \left(\frac{\alpha}{n}\right)^s \, p_n, \quad 1 \leq s \leq m. \quad \mathbf{P}_{\text{obc}} = 1 - \mathbf{p}_{n+m}, \ \lambda_b = \lambda P_{\text{obc}}, \quad \lambda_c = \lambda - \lambda_b. \\ \bar{n}_0 &= \sum_{k=0}^{n-1} (n-k) p_k, \quad \bar{n}_3 = n - \bar{n}_0, \quad \mathbf{K}_3 = \frac{\bar{n}_3}{n}, \quad \bar{l} = \bar{r} + \bar{n}_3, \quad \bar{t}_{\text{chct}} = \frac{\bar{l}}{\lambda'}, \\ \bar{r} &= \sum_{s=1}^m s p_{n+s} = p_n \sum_{s=1}^m s \cdot \left(\frac{\alpha}{n}\right)^s \end{split}$$

2.2.2 Система с ограничением времени пребывания в очереди

Система с ограничением на длительность пребывания заявки в очереди состоит из накопителя (очереди) и узла обслуживания. От предыдущей системы она отличается тем, что заявка, поступившая в накопитель (очередь), может ожидать начала обслуживания лишь ограниченное время $T_{\text{ож}}$ (время перемены, например). Если её время $T_{\text{ож}}$ истекло, то заявка покидает очередь и уходит из системы не обслуженной.

В данном расчете нам необходимо проанализировать, как влияет на эффективность системы $\bar{t}_{\rm ox}$ — среднее время пребывания заявки в очереди. Задаваясь рядом значений параметра $\bar{t}_{\rm ox}$, вычисляем те же показатели эффективности С, $P_{\rm o6c}$, $\bar{t}_{\rm сист}$, что и для системы с отказами. Полученные данные заносим в таблицу. Приводим графики зависимости этих показателей от величины $\bar{t}_{\rm ox}$. Оптимальной считается система, имеющая наименьший показатель эффективности С.

Сложность заключается в выборе значений параметра $\bar{t}_{\rm ow}$. Следует учесть, что для системы с отказами $\bar{t}_{\rm ow}=0$. Далее рекомендуется выбрать значение этого параметра, равным среднему времени обслуживания одной заявки $\bar{t}_{\rm ow}=\bar{t}_{\rm ofc}$. Если вычисленное при этом условии значение показателя С меньше, чем у оптимальной СМО с отказами, то $\bar{t}_{\rm ow}$ следует увеличить, в противном случае его нужно уменьшить. Достаточно провести расчеты для трех — четырех его значений. Финальные вероятности рассчитываются с точностью до 0.01

Таблица 5 – Расчет системы с ограничением на время пребывания в очереди

Система с ограничением на время пребывания в очереди												
Система	с огран	ичение	ем на	время п	іребываі	ния в очереди						
* -	λ —	1/6	ед.врем	Результирующие								
n,	λ – .	1/C		показа	атепи							
				Honuse								
$\overline{t}_{\text{ож}}$	\overline{n}_3	\bar{n}_0	Собщ	C	$P_{ m obc}$	k_3	$\overline{t}_{\text{сист}}$					
Ж	-3	-0		λ_c	λ_b	ед.ст	оп ст	000	-3	Сист		
				1	1	сд.ст	ед.ст			ед.вр		
				ед.вр	ед.вр							
				Дан	ные сис	темы с отказами						
$\overline{t}_{\text{OW}} = 0$												
ож о												
	Π.											
	да	нные с	истем	ы с огр	аничени	ем на время пребы	івания в с	череди	ı			
$\overline{t}_{\text{ож}} = \overline{t}_{\text{обс}}$												
	l .								l			

Таблица 6 – Сравнение двух типов систем

таолица о – сравнение двух тинов систем													
К вычис	К вычислению общей стоимости обслуживания заявок в единицу времени												
$\overline{t}_{\scriptscriptstyle ext{OW}}$	$0.5 \cdot \overline{n}_3$	$0, 2 \cdot \overline{n}_0$	$0,1\cdot\overline{r}$	$0, 2 \cdot \lambda_c$	Собщ								
	ед.стоим.	ед.стоим.	ед.стоим.	ед.стоим.	ед.стоим.								
Данные системы с отказами													
$\overline{t}_{\text{OW}} = 0$													
Дан	нные системы с	с ограничением	на время преби	ывания в очере,	ди								
$\overline{t}_{\text{ож}} = \overline{t}_{\text{обс}}$													

Необходимый список формул для расчета:

$$\begin{split} \alpha &= \lambda \cdot \bar{t}_{\text{obc}}, \quad \beta = \frac{\bar{t}_{\text{obc}}}{\bar{t}_{\text{ow}}}, \\ p_0 &= [\sum_{k=0}^n \frac{\alpha^k}{k!} + \frac{\alpha^n}{n!} \sum_{s=1}^\infty z_s]^{-1}, \quad z_0 = 1, \quad z_s = z_{s-1} \frac{\alpha}{(n+s\beta)} \\ p_k &= \frac{\alpha^k}{k!} p_0, \quad 0 \leq k \leq n, \quad p_{n+s} = p_n \cdot z_s, \quad s = 1, 2, \dots \\ \bar{n}_0 &= \sum_{k=0}^{n-1} (n-k) p_k, \quad \bar{n}_3 = n - \bar{n}_0, \quad P_{\text{obc}} = \frac{\bar{n}_3}{\alpha}, \quad \lambda_b = \lambda P_{\text{obc}}, \quad \lambda_c = \lambda - \lambda_b. \\ \kappa_3 &= \frac{\bar{n}_3}{n}, \quad \bar{r} = \frac{\alpha}{\beta} (1 - P_{\text{obc}}), \quad \bar{l} = \bar{r} + \bar{n}_3, \quad \bar{t}_{\text{cuct}} = \frac{\bar{l}}{\lambda}. \end{split}$$

2.3 Третий этап – влияние производительности каналов

Производительность канала обслуживания определяется величиной параметра $\bar{t}_{\rm oбc}$ – средним временем обслуживания одной заявки. Рассматривается смешанная система,

признанная оптимальной. Показатели эффективности этой первоначальной системы сравниваются с аналогичными показателями двух вариантов этой системы:

а) системы с уменьшенной производительностью каналов обслуживания за счет увеличения в два раза среднего времени обслуживания и с уменьшенными затратами, связанными с эксплуатацией и простоем оборудования

$$\bar{t}_{\text{obc}}^{a}=2\cdot\bar{t}_{\text{obc}},\quad c_{\text{k}}^{b}=0.6\cdot c_{\text{k}},\quad c_{\text{iik}}^{b}=0.75\cdot c_{\text{iik}}.$$

б) системы с увеличенной производительностью каналов обслуживания за счет уменьшения в два раза среднего времени обслуживания и увеличенными затратами, связанными с эксплуатацией и простоем оборудования

$$\bar{t}_{\text{obc}}^b = 0.5 \cdot \bar{t}_{\text{obc}}, \quad c_{\text{K}}^b = 1.6c_{\text{K}}, \quad c_{\text{IIK}}^b = 1.5c_{\text{IIK}}$$

Таблица 7 – Исходные данные

1 actività i - ricacquisic dannisic											
	Задані	ная см									
\overline{t}_{0}^*	ед.вј	Результирующие показатели									
$n^* =, \lambda =1/\text{ед.врем.}, \overline{t}_{\text{обс}} =ед.врем.$											
$egin{array}{ c c c c c c c c c c c c c c c c c c c$								С ед.ст	$P_{ m obc}$	k_3	$\overline{t}_{\text{сист}}$
	ед.вр				1	1	од.ст	од.от			ед.вр
					ед.вр	ед.вр					
Первона-											
чальный											
вариант											
Вариант а											
Вариант б											

Таблица 8 – Сравнение и оптимизация параметров

Кв	К вычислению общей стоимости обслуживания заявок в единицу времени												
	$\overline{t}_{ m oбc}$ ед.вр	$c_{ ext{K}}\cdot\overline{n}_{3}$ ед.стоим.	$c_{\text{пк}} \cdot \overline{n}_0$ ед.стоим.	$c_{ ext{oq}}\cdot\overline{r}$ ед.стоим.	$c_{ ext{отк}} \cdot \lambda_c$ ед.стоим.	С _{общ} ед.стоим.							
Первона- чальный вариант													
Вариант а													
Вариант б													